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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Shockwaves, like other waves, carry energy and propagate through a medium. 

The propagation is governed by a second order differential equation, which is hyperbolic 

in nature, and therefore the propagation occurs with a finite speed (Mariani, 2009). They 

are characterized by a nearly discontinuous change in characteristics of the medium, with 

an extremely rapid rise in pressure, temperature, and density across the shock front. This 

rapid change can cause deformation, fracture and fragmentation, polymorphic phase 

changes, and other alterations which can cause failure to occur in materials (Davison, 

2008). Researchers are interested in studying the potentially destructive effects of 

shockwaves both for applications where it is desired, such as military explosions and 

ballistic impacts, and resistances, such as supersonic flow and military defense. 

Experimental studies can be very costly, both in time and material. Therefore, it is 

preferred to use numerical simulations, whose only major cost is computation time. The 

simulation of nanoscale mechanics is of growing interest as the area of nanotechnology 

expands. Unfortunately, there are limitations to the size of nanoscale simulations due to 

limits in computational power and time. Multiscale models and simulations have been of 

growing interest in the area of computational nanotechnology because they can overcome 

these size limitations (Xiao, 2006).  

Multiscale models allow the study of multiple scales for a problem, such as 

quantum or atomic levels to macroscopic and continuum levels. This is important 

because different physical laws may be used to govern the physics at different scales. For 

example, in fluid dynamics, Molecular Dynamics and Newton’s Laws govern the motion 

of individual atoms at the nanoscale, while at the macroscale the Navier-Stokes equations 

are obeyed. While multiscale problems have been studied for a long time mathematically, 
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technology is now evolving to a point where the mathematics can begin to be studied and 

used in applied sciences, such as nanotechnology (E, 2003).  

Because of the nearly discontinuous nature of shockwaves, oscillations are 

generated behind the shock fronts, which are numerical errors that develop during the 

simulation. A common technique to remove these oscillations is applying artificial 

viscosity to the system (Kawai, 2007). While effective at reducing the oscillations, this 

method spreads the shock fronts over several elements and dissipates the total energy in 

the system. Alternatively, the flux-corrected transport method has been shown to remove 

oscillations without causing these problems, and a finite element with flux-corrected 

transport (FCT) method for the study of shock wave propagation was proposed by 

Shaoping Xiao (Xiao, 2004).  

The main goal of this thesis is to develop and conduct multiscale modeling and 

simulation of shockwave propagation with the removal of numerical errors and inclusion 

of temperature effects. The first chapter of this thesis presents the motivation and relevant 

background information for the study. Chapter 2 provides the mathematical models and 

governing equations used. The study of FCT on multiscale models and non-zero 

temperatures are discussed in Chapters 3 and 4. Finally, a summary of the results and a 

recommendation for future work is given in Chapter 5. 

1.2 Literature Review 

1.2.1 Multiscale Modeling 

Traditionally, engineering models focus on a single scale. If a problem is a 

macroscale application, then continuum models are used and any information about the 

smaller scales can be found from constitutive relationships. Similarly, if the problem is a 

microscopic application, then it is assumed that any process is homogenous at the 

macroscopic scales. Therefore, there has been a disconnect between the two scales, where 

the study and analysis of one scale require little knowledge of the other.   
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 As technology becomes more advanced, the problems studied for practical 

application become more complex, and the simple constitutive equations become 

inadequate. On the other side, any problem could theoretically be modeled using quantum 

theory, or another molecular based method such as molecular dynamics. The problem 

with this is that the theories are too complex or too small in dimension to be applied to 

practical problems. It is this problem that multiscale modeling seeks to remedy. 

 By modeling different scales simultaneously, the efficiency and size dimensions 

of the macroscale can be combined with the accuracy and effectiveness of the molecular 

scales. Multiscale modeling has been studied historically by mathematics, but the use for 

practical problems has been developed more recently. The first types of problems studied 

with multiscale modeling were problems involving chemical reactions, where quantum 

theory was used in the reaction region, and more classical models were used in the rest of 

the model. As researchers have realized that this method can be useful in all applications, 

not just chemistry or material science, and numerical computations have become more 

efficient, multiscale modeling has become of much greater interest and a rapidly 

expanding research area (E, 2011).  

1.2.2 Flux-Corrected Transport 

When simulating discontinuous phenomena, there is often a high level of error 

due to the generation of non-physical oscillations behind the shock fronts. This occurs 

because standard simulation techniques assume a continuous interpolation between the 

data points. Because these oscillations are solely numerical errors, they need to be 

removed if more accurate results are desired from the simulation (Mariani, 2009). 

Traditionally these oscillations were removed by applying an artificial viscosity to 

the model. There have also been methods developed that focus on the time integration to 

remove the oscillations, such as the α-method (Hilber, 1977). The problem with these 

methods was that while the oscillations were damped out, new non-physical effects were 
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introduced. The energy of the system was steadily dissipated, and the shock fronts 

became less sharp and spread over several elements or grids. 

The flux-corrected transport method was developed as a way to remove the 

oscillations without introducing these other non-physical effects, keeping the shock fronts 

sharp and discontinuous. It is a post-processing method that is composed of two steps, the 

first being the transport stage, and the second being the antidiffusive or corrective stage 

(Boris, 1973). The errors introduced in the transport stage are removed by the corrective 

stage by handling and analyzing the diffusive and antidiffusive fluxes. While the method 

was originally used with fluid dynamics and finite-difference methods, it has been 

expanded to the well-developed finite element methods and stress-waves in solids (Xiao, 

2004). 
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CHAPTER 2 

MODEL AND EQUATIONS 

In this thesis, the simulation of shockwave propagation in multiscale models at a 

zero or finite temperature field is studied, in order to examine the effectiveness of an 

algorithm which reduces the oscillations generated due to the discontinuous nature of the 

wave. In this chapter, the governing equations for the various methods and algorithms 

used are detailed.  

2.1 Molecular Dynamics 

Molecular Dynamics (MD) is a powerful tool that is used to elucidate many 

physical phenomena at the nanoscale. It assumes that the motion of the particles 

(molecules) in the system obey the laws of classical mechanics. In a MD simulation, the 

system is first initialized by selecting initial positions and velocities for each particle. 

Once initialization is done, the forces are calculated for each particle, and positions and 

velocities are updated through time integration of Newton’s equations of motion, shown 

in equation 2.1, where u is the  

 

Equation 2.1: MD equation of motion 

 ̈  
         

 
 

 

displacement, the superposed dots represent material time derivatives, fext is the externally 

applied force, fint is the internal force, and m is the particle mass. The internal force is 

derived from the potential energy equation as shown in equation 2.2, where U is the 

potential, and r is the distance between neighboring particles. Equation 2.2 is solved 

repeatedly until the target time of the simulation is reached, at which point the desired 

quantities of the simulation are measured or recorded. MD simulations are considered 
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Equation 2.2: Internal force equation 

      
  

  
 

 

excellent approximations for many materials (Frenkel, 1996).  

MD simulations can be used to measure various material and thermal properties 

of a system over time. For example, individual particles do not have a defined 

temperature, which is instead described by the kinetic energy of the system as shown in 

equation 2.3, where K is the average kinetic energy, kb is the Boltzmann Constant, and T 

is the temperature. Thus, the instantaneous temperature will fluctuate as the particle 

velocities change, and an initial temperature for the system could be given by prescribing 

initial velocities to each particle following a Boltzmann distribution, while keeping the 

mean velocity zero, so that the center of mass is stationary. 

 

Equation 2.3: Instantaneous temperature relative to average kinetic energy 

   
 

 
    

 

2.2 Finite Element Method 

Finite element methods are numerical techniques used to find approximate 

solutions to systems which are mathematically governed by partial differential equations. 

They have been widely developed and commonly used to find solutions to complex 

problems. In general, the problem domain is discretized into elements, and the PDEs are 

solved along the boundary with either an algebraic system of equations (steady state 

problems) or a system of ordinary differential equations (transient problems). The 

governing equations and discretization for the finite element method are detailed below. 

The motion of a given domain Ω from its reference configuration Ω0 can be 

described by equation 2.4, where x is the spatial (Eulerian) coordinates, X is the material 
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(Lagrangian) coordinates, and t is time. The momentum equations for the reference 

configuration can then be written as equation 2.5, where P is the nominal stress tensor, b 

 

Equation 2.4: Mapped equation of motion 

         

 

Equation 2.5: Momentum equation for reference domain configuration 

             ̈ ∑
    

   
          ̈ 

 

 

 

is the body force, and ρ0 is the initial density. However, if the current configuration is  

equivalent to the reference configuration, then equation 2.5 can instead be written in the 

(identical) spatial form as in equation 2.6, where ρ is the current density. Equation 2.7 can  

 

Equation 2.6: Momentum equation for current domain configuration 

           ̈ ∑
    

   
        ̈ 

 

 

 

Equation 2.7: Conservation of mass 

      

 

then be derived from the conservation of mass, where J is the Jacobian determinant of the 

deformation gradient F, as defined in equation 2.8. Using the total Lagrangian finite 

element method, the displacements in the Lagrangian mesh can be approximated by 

 

Equation 2.8: Jacobian and deformation gradient 
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equation 2.9, where       is the shape function of the material coordinates in the total  

Lagrangian description. The approximation of the first derivatives of displacement can 

then be written as equation 2.10. Equation 2.11, then, shows the Galerkin weak form of 

the conservation of linear momentum equation, where     is the test function and   ̅ is the 

 

Equation 2.9: Approximate displacements in Lagrangian mesh 

                     
       ∑           

 

 

 

Equation 2.10: Approximate first derivative of displacement 

   
                 

   
      

   
 ∑

      

   
      

 

 

 

Equation 2.11: Conservation of momentum in weak form 

∫       ̈ 
  

    ∫        
  

    ∫ ∑
      

   
   

   

    ∫      ̅
  
 

   
  

 

boundary traction. Equation 2.1, the equation of motion, can then be rewritten for a node 

I as equation 2.12, where the external force    
    and internal force    

    are given by 

equations 2.13 and 2.14, respectively. 

 

Equation 2.12: FE equation of motion for node I 

   ̈      
       

    

 

Equation 2.13: External nodal force 

   
    ∫          

  

    ∫        ̅
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Equation 2.14: Internal nodal force 

   
    ∫ ∑

      

   
   

   

    

2.3 Monte Carlo Simulations 

Monte Carlo (MC) simulations use a classical statistical approach and the 

importance sampling to determine the properties of a system.   It can be used on a variety 

of different ensembles, depending on which properties are kept constant, and the free 

energy of the system. Most MC methods can be reduced to stages: select a particle at 

random and calculate its energy in the current state, give the particle a random 

displacement and calculate its new energy, and finally accept or reject the displacement 

based on the change in energy.  

The probability is based on a Boltzmann distribution, shown in equation 2.15, 

where    is the probability of a system to be in state i with energy Ei. This probability is 

 

Equation 2.15: Boltzmann distribution probability 

   
           ⁄  

∑            ⁄   
 

 

related to the partition function Q, equation 2.16, which is the sum over all quantum 

states i of the Boltzmann factor            ⁄  , where    represents the coordinates of 

all N particles, and the function E is the energy of the system. The Helmholtz free energy 

can then be written as equation 2.17. Using equation 2.15, the probabilities of the system 

being at the current state m (  ), and a trial state n (  ) are calculated, and the probability 

of the trial move occurring from m to n, Amn, is found from equation 2.18. Thus, the  

 

Equation 2.16: Partition function 

  ∫    ( 
     

   
)    
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Equation 2.17: Helmholtz free energy 

    
 

   
    

 

Equation 2.18: Trial move probability 

    
  
  

 [
          

 
] [

          

 
]⁄    

 

   
 

 

partition function does not necessarily need to be computed every time. It can be seen 

that the change in energy can be directly compared, so equation 2.18 can be rewritten as 

equation 2.19. Therefore, if      is greater than zero, the probability     is calculated 

 

Equation 2.19: Reduced trial move probability 

                           

 

to determine if the trial move occurs, and if      is less than zero,     is set to 1, and 

the trial move occurs. 

2.4 Macroscopic Atomistic Ab Initio Dynamics 

Macroscopic Atomistic Ab Initio Dynamics (MAAD) is a concurrent multiscale 

coupling method, used to couple the different length scales used in multiscale modeling. 

It can be used for length scales from the atomic level to the macroscopic level (Lu, 2005). 

MAAD is based on the conservation of energy in the system using the total Hamiltonian 

as shown in equation 2.20, where H represents the Hamiltonian for the designated  

 

Equation 2.20: Total Hamiltonian of MAAD system 
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subscript, with FE/MD and MD/TB representing the finite element/molecular dynamics 

handshake region and the molecular dynamics/tight-bonding quantum level handshake 

region, respectively.  In the FE/MD handshake region, the MD particles are constrained 

to align with the FE nodes. 

 The first three terms of equation 2.20 are the Hamiltonians for the regions where 

only one length scale is used, as defined by equation 2.21, where     is the strain or 

 

Equation 2.21: Single domain Hamiltonian 

         

 

potential energy of domain i, and    is the kinetic energy. The Hamiltonians for the 

handshake regions are composed equally of the two domains, as shown in equation 2.22.  

 

Equation 2.22: Handshake domain Hamiltonian 

     
 

 
   

 

 
   

 

 
              

 

Similarly, the forces from each region are calculated and applied equally to the 

handshake domain. 

2.5 Flux-Corrected Transport 

The flux-corrected transport (FCT) algorithm contains two stages, the transport 

stage and the antidiffusion stage, where the antidiffusion stage corrects the numerical 

errors from the transport stage. These two stages allow the FCT algorithm to treat 

discontinuities without generating oscillations. The FCT algorithm was originally used in 

finite-difference (FD) methods. The general FCT is composed of six steps outlined below 

in equations 2.23 through 2.28. 
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The first step is the transport calculation, where the trial values of any function Q 

are obtained at time step n+1 and spatial step j with equation 2.23, where    is the time- 

 

Equation 2.23: FCT trial values 

 ̃ 
        

         

 

step and    is the spatial increment. The second step is equation 2.24, the calculation of  

 

Equation 2.24: FCT diffusive flux 

  
    (    

    
 ) 

 

the diffusive fluxes, where     is the diffusive coefficient. The third step is equation 2.25, 

 

Equation 2.25: FCT diffusion 

 ̅ 
     ̃ 

      
      

  

 

the diffusion step. Step four is equation 2.26, the calculation of the antidiffusive fluxes, 

 

Equation 2.26: FCT antidiffusive flux 

  
    ( ̃   

   ̃ 
 ) 

 

where    is the antidiffusive coefficient. Step five is equation 2.27, the limitation of  

 

Equation 2.27: FCT limitation of antidiffusive flux 

  
        {     [       |  

 |       ]} 

 

antidiffusive fluxes, where          
  , and       ̅ 

     ̅   
   . The final step is  
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equation 2.28, the antidiffusion step. 

 

Equation 2.28: FCT antidiffusion 

  
     ̅ 

      
      

  

 

 While FCT has been shown to efficiently eliminate oscillations when used with 

FD methods, it must be applied to each of the several PDEs that are usually needed for 

FD. For FE methods, the same algorithm can be used by applying the FCT to the 

velocity. Since each component of velocity is independent, the FCT can be applied to 

each component separately, provided that a structured mesh is used.  

2.6 Temperature Related Cauchy-Born Rule 

When larger systems on the nanoscale are to be simulated, various multiscale methods 

are available to help reduce the required computational time and power. Regardless of 

what methods are used, a continuum-approximation approach, such as the Cauchy-Born 

(CB) rule, is used as a homogenization technique (E, 2006). The CB rule assumes locally 

homogenous deformation in the continuum domain. The atomic potential can then be 

used in the constitutive equation as the strain energy density (potential energy density) 

for the continuum via the deformation gradient, as shown in equations 2.29 and 2.30, 

where F is the gradient of deformation and X is the reference (Lagrangian) coordinates in 

equation 2.29, and in equation 2.30 WC is the total strain energy, wc is the strain energy 

density, and    is the reference configuration. The first Piola–Kirchhoff stress, P, can 

then be obtained from equation 2.31. However, it is assumed that the continuum domain 

 

Equation 2.29: Deformation gradient in continuum domain 
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Equation 2.30: Total strain energy 

   ∫     

  

    

 

Equation 2.31: First Piola-Kirchhoff stress 

  
      

  
 

 

is at zero temperature. The Temperature-Related Cauchy-Born (TCB) rule, however, 

provides a homogenization technique which allows non-zero temperatures to be used 

(Xiao, 2006).  

There are several ways to include temperature effects. One such way is to use a 

potential function that includes the entropy due to lattice vibration, such as an Einstein 

description similar to course graining of vibrations (Najafabadi, 1992). Another 

technique, which is used in the TCB rule, is a free energy minimization technique 

(Dupuy, 2005). Instead of the potential energy, the Helmholtz free energy, or effective 

energy, is used instead. The atomic Helmholtz free energy equation is shown in equation 

2.32, where    is the Helmholtz free energy,  ̅ = h/2π with h being Planck’s constant, n  

 

Equation 2.32: Atomic Helmholtz free energy 

            ∑  [      (
 ̅  

    

    
)]

 

 

 

is the number of degrees of freedom per atom, and    is the determinate of the 

diagonalized local dynamic matrix, used to calculate the principal frequencies of atom I. 

The TCB rule assumes that at a given temperature, atoms have the same local vibration, 

the vibration of an atom is harmonic, and the coupled vibration of atoms is negligible, in 



www.manaraa.com

15 
 

 

1
5
 

addition to the assumption of locally homogenous deformation from the standard CB 

rule. 

 The total free energy can be found with equation 2.33, where WH is the total free 

energy and    is the number of atoms per unit volume. The first Piola-Kirchhoff stress as 

a function of temperature, therefore, can be found from equation 2.34, where wH is the 

free energy density as a function of the deformation gradient and temperature. 

 

Equation 2.33: Total free energy 

   ∫     

  

       ∫     [
 ̅          

   
]

  

    

 

Equation 2.34: Piola-Kirchhoff stress for free energy 
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CHAPTER 3 

MULTISCALE MODELING AT ZERO TEMPERATURE 

One of the major limiting factors in a MD simulation is the size of the model. In 

order to have a larger model, many more atoms must be added. However, if a multiscale 

method is used, the computation time can be drastically reduced. There are two types of 

multiscale methods: hierarchical multiscale methods and concurrent multiscale methods. 

Hierarchical models use a consistent time scale while using continuum approximations to 

approach the nanoscale. In this thesis, shock wave propagation in a molecule chain is 

studied. In this chapter, the concurrent MAAD method is used to couple the MD domain 

with the FE domain. The effects of the FCT algorithm are first studied on MD and FE 

methods independently in sections 3.1 and 3.2, respectively, while section 3.3 

investigates the effects of the coupled multiscale model. 

3.1 Shockwave Propagation with MD 

Whenever MD is used for simulations, the potential function must first be chosen 

to describe interaction between two neighboring molecules in the simulated molecule 

chain. Two potential functions will be studied here, the first being a simple spring model 

shown in equation 3.1, where k is the spring stiffness,    is the unstretched bond length,  

and   is 

 

Equation 3.1: Spring potential function 

   
 

 
         

 

the current bond length. The second potential function examined is the Lennard-Jones 6-

12 (LJ) potential, shown in equation 3.2, where   is the depth of the energy well. The 

simulation will be done with a one-dimensional model, with the assumption that a    
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Equation 3.2: LJ potential function 

      [
 

 
(
  
 
)
  

 
 

 
(
  
 
)
 

] 

 

particle only interacts with its immediate neighbors. The flowchart for the MD simulation 

can be written as follows: 

1) Initialization and initial conditions: give initial positions to the particles in 

equilibrium position. 

2) Calculate particle forces as in equation 2.2. 

3) Obtain particle velocities:  ̃ 
      

  (  
      

   )   ⁄   . If FCT is not being 

used,   
     ̃ 

    and go to (4), otherwise apply FCT to velocity: 

a) Calculate diffusive fluxes:   
         

    
  . 

b) Diffusion:  ̅ 
     ̃ 

      
      

 . 

c) Calculate antidiffusive fluxes:   
      ̃   

   ̃ 
  . 

d) Apply limitation of antidiffusive fluxes: 

  
        {     [       |  

 |       ]}, 

where          
  , and       ̅ 

     ̅   
   . 

e) Antidiffusion:   
     ̅ 

      
      

 . 

4) Update the positions and apply any boundary conditions:   
      

    
     . 

5) Output if simulation is complete; if not, return to (2). 

An external force will applied to the end of the molecular chain. The boundary condition 

for the other end can be fixed at zero displacement, or can be a free end. 

The first potential function considered is the spring-model. Thus, the total force 

on a particle i is calculated as in equation 3.3. A square stress wave is considered with the 

spring-model parameters       N/m and         nm. A force with magnitude 30 nN 

is applied to a molecular chain with a free end for 1.3 seconds and then released. A single 

particle has a mass of 0.1 kg. A free end  
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Equation 3.3: Total particle force from spring potential 

  
      

     [             ] 

 

boundary condition is used for the opposite end of the chain. Figures 3-1 and 3-2 show 

the wave at three different times:       ,       , and         s. Figure 3-1 shows 

the oscillations being generated behind the shock fronts without any filtering, while a 

very good discontinuous wave profile can be seen in Figure 3-2 when the FCT algorithm 

is applied. 

 

Figure 3-1: Square shape stress wave propagating along a one-dimensional molecular 
chain with MD and a spring-model potential. 
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Figure 3-2: Square shape stress wave propagating along a one-dimensional molecular 
chain with MD and a spring-model potential with FCT applied. 

 Next, a different wave shape is examined by changing the applied load and 

keeping all other properties constant. Instead of a constant magnitude, the load 

exponentially decays after the initial application. Figures 3-3 and 3-4 show the wave 

without FCT applied and with FCT applied, respectively. It can be seen that the algorithm 

can remove the oscillations while preserving the discontinuous wave front and the peak 

of the wave. It should be noted that in both cases the wave perfectly retains its shape as it 

propagates through the system. This is due to the spring-model potential being very 

simple, and its derivative, which is the internal force, being linear. Because the slope for 

the internal force is constant, it does not matter how high or low the stress is, the stiffness 

is always the same, and thus the front (loading) wave and back (unloading) wave always 

have the same speed, even if the stresses are at different magnitudes. 
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Figure 3-3: Decaying stress wave without FCT smoothing in a one-dimensional model 
with MD and a spring-model potential. 

 

Figure 3-4: Decaying stress wave with FCT applied in a one-dimensional molecular chain 
with MD and a spring-model potential. 
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Next, the more complex LJ potential is used, with      nJ and         nm. 

The total force on particle i when the LJ potential is used can be written as equation 3.4.  

 

Equation 3.4: Total particle force from LJ potential 

  
      

      
 

  
[(

  
       

)
 

 (
  

       
)
  

 (
  

       
)
 

 (
  

       
)
  

] 

 

As with the spring-model potential, a square stress wave will be examined first. A 

force of 30 nN is applied to the end of the molecular chain for 0.004 s. Figures 3-5 and 3-

6 show the wave without filtering and with the FCT algorithm, respectively, at times 

         ,          , and          s. It can be seen that oscillations are again 

generated behind the shock fronts, and that the FCT algorithm effectively removes the 

oscillations while keeping a sharp, discontinuous wave profile. Also, because the stress is 

small enough here, the equivalent stiffness due to the LJ potential is almost a constant. 

Therefore, the loading and unloading waves have nearly the same (and constant) speed, 

so the shape is almost perfectly maintained. However, as will be discussed below, when 

using the LJ potential the wave speed for different stress levels will vary, because the 

equivalent stiffness (second derivative of the potential) is not constant. Higher stresses 

will cause slower wave speeds, so the loading wave will begin to slope backwards, while 

the unloading wave will become more vertical. This phenomenon will be examined more 

closely by studying the decaying wave below.  
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Figure 3-5: Square shape stress wave propagating along a one-dimensional molecular 
chain with MD and a LJ potential without FCT applied. 

 

Figure 3-6: Square stress wave propagating along a one-dimensional molecular chain 
with MD and a LJ potential with FCT applied. 
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 Next, a wave similar to the exponentially decaying wave is studied, but the initial 

magnitude is held for 0.002 s, and then decays for 0.003 s down to zero. As shown in 

Figure 3-7, the internal force is nonlinear, so the stiffness is not constant but instead 

depends on the bond length, and therefore the stress level, at that position. Because the 

unloading wave has a lower stress magnitude, it travels faster than the loading wave. As 

the unloading wave catches the loading wave, the plateau begins to shrink, and the 

loading wave begins to slope back towards the unloading wave, as shown in Figures 3-8 

through 3-11. In Figures 3-8 and 3-9, the initial loading magnitude is 30 nN, while in 

Figures 3-10 and 3-11 the loading magnitude is ten times greater at 300 nN. It can be 

seen that because the higher stresses cause greater bond lengths, the difference in speed 

between the loading and unloading waves is also greater, so the plateau shrinks more 

rapidly. It can also be seen that the FCT algorithm effectively removes the oscillations 

and generates a good discontinuous front without altering this property in any way, and 

allows the shrinking plateau effect to be more easily observed. 

 

 

Figure 3-7: LJ Force as a function of bond length r. 
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Figure 3-8: Decaying stress wave without FCT smoothing in a one-dimensional model 
with MD and a LJ potential. 

 

Figure 3-9: Decaying stress wave with FCT smoothing in a one-dimensional model with 
MD and a LJ potential. 
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Figure 3-10: High magnitude decaying stress wave without FCT smoothing in a one-
dimensional model with MD and a LJ potential. 

 

Figure 3-11: High magnitude decaying stress wave with FCT smoothing in a one-
dimensional model with MD and a LJ potential. 



www.manaraa.com

26 
 

 

2
6
 

3.2 Shockwave Propagation with FE 

In order to capture the nanoscale properties of a system while using FE methods, 

a homogenization technique must be used. In this case, the Cauchy-Born rule for a 

nanoscale-continuum approximation will be used. It is assumed that within an element 

the deformation is homogenous. The deformation gradient is then used to calculate the 

strain energy from equation 2.30, which depends on the potential function used for the 

nanoscale. For a spring potential, the energy density can be written as equation 3.5, where 

    and   are the undeformed and deformed lengths of the FE element, respectively. The 

 

Equation 3.5: Energy density for spring potential 

   
 

  
 

   
 

         
 

  
 

 

  
 

 

first Piola-Kirchhoff (PK) stress can then be found from equation 2.31, as shown in 

equation 3.6. Once the PK stress has been found, the internal forces can be calculated 

from  

 

Equation 3.6: First PK stress for spring potential 

  
      

  
            

 

equation 2.14. Using a linear interpolation, the internal forces for a one-dimensional 

model is equivalent the first PK stress, as shown in equation 3.7 where   
    is the internal  

Equation 3.7: Internal nodal force for one-dimensional model 

     [
  

   

  
   ]  ∫ [
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force on the first node of an element, and   
    is the internal force on the second node of 

the element. Thus, for a system using the spring potential, the total force on a node i can 

be calculated from equation 3.8. 

 

Equation 3.8: Total force on FE node i 

  
      

    
    
  

                

 

 The square wave will again be the first case studied using a FE approximation for 

the spring potential MD model used in the previous section, with       N/m,    

     nm, and    representing five bonds:         nm. An external force of 30 nN is 

applied to the left end of the molecular chain for 1.3 s and then released. Figures 3-12 and 

3-13 show the wave at times       ,       , and         s. The oscillations 

generated behind the shock fronts can be seen in Figure 3-12. While the oscillations are 

more course than in the MD model, it can be seen that the wave has the same magnitude, 

length, shape, and position as the MD model with the same conditions and parameters in 

Figure 3-5. While the wave in Figure 3-12 appears to becoming more course as it 

propagates, it can be seen that the FCT filtering corrects this degradation, and keeps a 

sharp discontinuous profile.  

 Next, the exponentially decaying wave using the spring potential will be 

examined, using the same parameters and bond/element lengths, with the difference 

being that 0.65 s after the load is applied, it exponentially decays down to zero. As shown  
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Figure 3-12: Square stress wave propagating along a one-dimensional molecular chain 
with FE and a spring potential without FCT applied. 

 

Figure 3-13: Square stress wave propagating along a one-dimensional molecular chain 
with FE and a spring potential with FCT applied. 
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in Figure 3-14, the wave without FCT filtering is much more course than the MD model, 

and this coarseness causes the wave to start breaking down as it propagates. However, the 

FCT smoothing both removes the oscillations and restores the integrity of the wave 

profile, as shown in Figure 3-15. It should be noted for both the square wave and the 

exponentially decaying wave, the wave speed is constant regardless of stress level 

because the strain energy density was derived from a spring potential function for the 

nanoscale, and that any decomposition of the wave is instead due to the how course the 

model is compared to the size of the wave. 

 

Figure 3-14: Decaying stress wave without FCT smoothing in a one-dimensional model 
with FE and a spring potential. 

 Next, the FE model with the strain energy density derived from the LJ potential 

will be investigated. The energy density when using the LJ potential can be written as 

equation 3.9, and therefore the first Piola-Kirchhoff stress for the LJ potential can be 

written as equation 3.10. From the PK stress, the total force on a node i can then be 
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written as equation 3.11. It can be seen that because the LJ potential is a function of the 

ratio    ⁄ , which is simply the inverse of the defined deformation gradient, that the PK 

stress and total force equations do not change very much from the MD model to the FE 

model when there is only one degree of freedom. 

 

Figure 3-15: Decaying stress wave with FCT smoothing in a one-dimensional model with 
FE and a spring potential. 

Equation 3.9: Energy density for LJ potential 
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Equation 3.10: First PK stress from LJ potential 
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Equation 3.11: Total force on node i from LJ nanoscale potential 
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 Once the internal forces can be determined, the stress waves can be analyzed. 

Using similar parameters to the MD model,      nJ,         nm, and         nm, 

a force of magnitude 30 nN is applied for 0.004 s and then released. Figures 3-16 and 3-

17 show the wave before and after the FCT was applied, respectively, at times    

      ,          , and          s. Similar to the FE model with the spring 

potential, it can be seen that in Figure 3-16 the wave is slowly breaking down due to how 

course the model is, and the FCT again restores the wave while removing the oscillations 

generated behind the shock fronts. Also, when the FCT is applied, the stress level is 

constant across the wave, so both the loading and the unloading wave have 

 

Figure 3-16: Square stress wave propagating along a one-dimensional molecular chain 
with FE and a LJ potential without FCT applied. 
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Figure 3-17: Square stress wave propagating along a one-dimensional molecular chain 
with FE and a LJ potential with FCT applied. 

the same speed, and therefore there is little to no change in shape, size, or magnitude as 

the wave propagates.  

 For the exponentially decaying wave, the same parameters and model are used 

with the only difference again being that after the initial magnitude is held for 0.002 s, it 

decays exponentially down to zero. The decaying wave with an initial magnitude of 30 

nN is shown in Figures 3-18 and 3-19, before and after applying the FCT, respectively, at 

times          ,          , and          s. It can be seen that the effects of both 

the coarseness of the model and the changing stiffness of the bonds are present. However, 

with the low magnitude, only one of the effects is easily visible at a time. In Figure 3-18, 

the decomposition of the wave due to how course the model is makes it difficult to see 

the sloping of the loading wave and shrinking plateau. Once the FCT is applied, however, 

the coarseness effect is eliminated, and the effect of the unloading wave traveling faster 

than the loading wave can be more easily observed. As with the MD 
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Figure 3-18: Decaying stress wave without FCT smoothing in a one-dimensional model 
with FE and a LJ potential. 

 

Figure 3-19: Decaying stress wave with FCT smoothing in a one-dimensional model with 
FE and a LJ potential. 
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model, a higher magnitude of stress causes a larger change in stiffness to occur, which 

results in the speed difference between the loading wave and unloading wave to be 

amplified. In Figures 3-20 and 3-21, the initial magnitude of the applied force is 

increased to 300 nN. With the larger magnitude, it becomes more obvious that the 

loading wave is sloping back even without the FCT being applied, as seen in Figure 3-20. 

It can also be seen by comparing Figure 3-21 and 3-19 that with the higher magnitude 

force, the difference in speed between the loading wave and unloading is much greater, 

just as in the MD model. It can also be seen that, like the FE model derived from the 

spring potential, the FE models from the LJ potential have the same wave speed, shape, 

and magnitude as in the MD model with the same conditions. This is expected, as the FE 

model is used to approximate the MD model while reducing computation time and 

energy.  

 

Figure 3-20: High magnitude decaying stress wave with FCT smoothing in a one-
dimensional model with FE and a LJ potential. 
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Figure 3-21: High magnitude decaying stress wave with FCT smoothing in a one-
dimensional model with FE and a LJ potential. 

3.3 Multiscale Coupling 

In sections 3.1 and 3.2 it was shown that the FCT algorithm can effectively 

remove oscillations generated in the simulation while keeping sharp, discontinuous wave 

profiles intact, even if the wave began to break down in the course FE model when the 

FCT algorithm was not applied. In this section, the MD and FE domains will be coupled 

together using the MAAD method. Therefore, the MD and FE contribute equally to the 

internal forces in the handshake region. For a one-dimensional problem, this can be 

modeled using a single node or particle. Therefore, one side is represented by the MD 

domain, and the other is represented by the FE domain, and the MD particle at the 

interface is also constrained as a FE node. The mass of this center particle is then 

contributed equally from the MD and FE domains, as shown in equation 3.12.  

First, the direct coupling of the two domains will be examined, where the 

handshake domain goes directly from the MD bonds to the full FE length with no 
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Equation 3.12: MAAD handshake particle mass 
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transition. Using a spring potential, the total force on the handshake particle i can be 

written as equation 3.13. Using the parameters       N/m,         nm, and    

representing five bonds:         nm, a square wave is examined by applying an 

external force of 30 nN to the left end of the molecular chain for 1.3 s and then released. 

Figure 3-22 shows the wave at times       ,       , and         s. By comparing 

Figure 3-22 to 

 

Equation 3.13: Total force on handshake particle from spring potential 
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Figure 3-22: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model and a spring potential without FCT applied. 

Figures 3-1 and 3-12 that the wave correctly transitions from the MD domain to the FE 

domain. It can also be seen that at the handshake region, at the midpoint of the molecular 

chain      nm, that some reflection of the generated oscillations is occurring. This is 

because the oscillations generated in the MD domain are of a higher frequency than those 

generated in the FE domain, and the FE domain’s element size is large than the MD 

oscillations. Therefore, because the FE domain cannot hold these oscillations, the 

handshake point acts a fixed end for the oscillations, and they are reflected back into the 

MD domain. Figure 3-23 shows the wave with the FCT algorithm applied. It can be seen 

that the reflected oscillations are picked up as small pulses when the algorithm is used.  

 Similarly, it can be shown that this is not dependent on the potential function, but 

only the mismatch in size between the MD bond length and the FE element size. Using 

the LJ potential, the total force on the handshake node can be written as equation 3.14. 
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Figure 3-23: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model and a spring potential with FCT applied. 

Keeping the parameters the same as in the MD and FE models with      nJ,         

nm, and         nm, a force of magnitude 30 nN is applied for 0.004 s and then 

released. Figures 3-24 and 3-25 show the wave at times          ,          , and 

         s before and after applying the FCT, respectively.  It can be seen that while 

the wave again transitions properly from the MD domain to the FE domain, there are still 

reflections which get picked up by the FCT algorithm and appear as small pulses. In 

order to reduce these pulses as much as possible, a transition regime can be used where 

 

Equation 3.14: Total force on handshake particle with LJ potential 
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Figure 3-24: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model and a LJ potential without FCT applied. 

 

Figure 3-25: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model and a LJ potential with FCT applied. 
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the FE element size is gradually increased to the full length, rather than immediately start 

at the full size coming from the MD domain. 

  This can be done by increasing consecutive element sizes by one bond length 

until they reach the standard element size, as illustrated in Figure 3-26. In this case, the  

 

Figure 3-26: Example of transition region elements. 

first FE element, connected to the handshake particle, will be two bond lengths,       

  , the next two being three and four bond lengths respectively,          and     

    , and the rest of the elements being the standard five bond lengths long. Equations 

3.13 and 3.14 still apply for the handshake particle, with    being replaced with    , the 

FE element associated with the handshake region. Using the same spring potential 

parameters used for Figures 3-22 and 3-23, the square wave is again examined using a 

multiscale model with the transition region. As seen in Figure 3-27, there are still some 

oscillation reflections when the FCT algorithm is not used, and there is no observable 

difference between the multiscale models with and without the transition region. 

However, it can be seen in Figure 3-28 that when the FCT algorithm is applied, the small 

pulses are reduced even further than in Figure 3-23, and are nearly completely removed. 

It is known from the MD and FE models that the square wave and the decaying wave 

have different oscillations generated. The decaying wave is shown in Figures 3-29 and  
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Figure 3-27: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model with a transition region and a spring potential without 

FCT applied. 

 

Figure 3-28: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model with a transition region and a spring potential with 

FCT applied. 
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3-30 before and after applying the FCT algorithm, respectively. It can be seen in Figure 

3-29 that indeed there is a small pulse of oscillations that were reflected, and that in 

Figure 3-30, the FCT algorithm reduces the pulse to approximately zero. 

 Next, the multiscale model with a transition region will be investigated for the LJ 

potential. It can be seen from both the MD models and the FE models that oscillations 

generated when using the LJ potential are generally greater in magnitude than those 

generated when using the spring potential and as such it is important to examine each 

case for the LJ potential in the multiscale model as well. The parameters used are the 

 

Figure 3-29: Decaying stress wave propagating along a one-dimensional molecular chain 
with a multiscale model with a transition region and a spring potential without 

FCT applied. 
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Figure 3-30: Decaying stress wave propagating along a one-dimensional molecular chain 
with a multiscale model with a transition region and a spring potential with 

FCT applied. 

same as were used in the previous multiscale model, and three elements are again used in 

the transition region,         ,         , and         . In Figures 3-31 and 3-

32, the square stress wave is shown before and after the FCT algorithm being applied, 

respectively. It can be seen that, compared to the MD and FE models, the wave is 

correctly transitioning from one domain to the other as expected. It can also be seen that 

the oscillations are indeed reflected at the handshake region, and are of greater magnitude 

than in Figure 3-27 where the spring potential is used. Figure 3-32 shows that with the 

transition region, the FCT results in a much smoother result compared to Figure 3-25 

where the oscillations are clearly result in small pulses. While the position of these pulses 

can still be seen in Figure 3-32, they are of negligible magnitude. 

 It is also known from the MD and FE models that when using the LJ potential, a 

decaying wave will behave differently in regards to the speed difference between the 

loading and unloading waves, depending on the initial magnitude of the applied load.  
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Figure 3-31: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model with a transition region and a LJ potential without 

FCT applied. 

 

Figure 3-32: Square stress wave propagating along a one-dimensional molecular chain 
with a multiscale model with a transition region and a LJ potential with FCT 

applied. 
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Figures 3-33 and 3-34 show the lower magnitude wave before and after the FCT 

application, respectively, while Figures 3-35 and 3-36 show the high magnitude wave 

before and after the FCT application, respectively. It can be seen that the oscillations, and 

subsequent reflections, in the MD domain appear to be relatively larger for the low 

magnitude wave than those for the high magnitude wave. However, the oscillations 

generated in the FE domain are clearly larger, relative to the applied load, for the high 

magnitude wave. In both cases though, the FCT algorithm effectively removes these 

oscillations and, with the transition region, not generate the small pulses associated with 

the reflections. 

 It has been shown that the FCT algorithm can efficiently remove the oscillations 

in a multiscale model for both the spring potential and the LJ potential. However, a 

transition region must be included between the MD domain and the FE domain in order 

to avoid the generation of small pulses in the MD domain. In the next chapter, a 

multiscale model can then be used while including another method, which allows for the 

temperature effects to be included in the simulation. 
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Figure 3-33: Low magnitude decaying stress wave propagating along a one-dimensional 
molecular chain with a multiscale model with a transition region and a LJ 

potential without FCT applied. 

 

Figure 3-34: Low magnitude decaying stress wave propagating along a one-dimensional 
molecular chain with a multiscale model with a transition region and a LJ 

potential with FCT applied. 
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Figure 3-35: High magnitude decaying stress wave propagating along a one-dimensional 
molecular chain with a multiscale model with a transition region and a LJ 

potential with FCT applied. 

 

Figure 3-36: High magnitude decaying stress wave propagating along a one-dimensional 
molecular chain with a multiscale model with a transition region and a LJ 

potential with FCT applied. 
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CHAPTER 4 

NON-ZERO TEMPERATURE EFFECTS 

Traditionally, temperature is included in molecular dynamics simulations by 

prescribing an increased average velocity across all the atoms with a Boltzmann 

distribution, which has a mean of zero and standard deviation dependent on desired 

temperature. This is a problem when it is desired to use the FCT algorithm to improve the 

accuracy, because the prescribed vibrations are removed by the algorithm. Therefore, it is 

necessary to find an alternate method for including the temperature effects while applying 

the FCT to the simulation. This can be done by using the free energy, opposed to the 

potential energy, of a system and using the Temperature-Related Cauchy-Born Rule 

(TCB) as a homogenization technique. 

4.1 Monte Carlo Simulation 

From Equation 2.32, the free energy is still dependent on the potential energy, so 

the potential function chosen is still an important factor on the system properties. It is 

clear that the stiffness, from the second derivative of the energy, will be different for the 

free energy than the potential energy. However, it is also known that with increased 

temperature, most materials expand, so that the undeformed bonds will have different 

values than the zero temperature case (potential energy only). To determine the new 

undeformed bond lengths, a Monte Carlo simulation can be done using the free energy. 

Then, new parameters for a new approximation potential can be found with the new bond 

length and free energy at that point.  

First, a potential function must be chosen. In this case, the LJ potential will again 

be examined, but not the spring potential. This is because in equations 2.32 and 2.33, the 

diagonalized matrix D, for a one dimensional system, is the second derivative of the 

potential. In the case of the spring potential, the second derivative is a constant, so when 

the stress is calculated by taking the derivative, this becomes zero, and only the potential 
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term remains. Also, it is important to note that parameter choices must be more careful, 

because if the potential chosen is too stiff, then the potential dominates the temperature 

term, and the temperature effects become negligible. Conversely, if the chosen potential 

is not stiff enough, the bonds will break too easily when the temperature is included, and 

the system will become unstable. From these limits, the parameters for the LJ potential 

are              J and        nm, arbitrary values.  

Using equation 2.19, the new bond lengths are found by incrementally increasing 

the volume, and comparing the resulting free energy densities. Figure 4-1 shows the 

results for the MC simulation when the temperature is set to the average room 

temperature of 300 K. It can be seen that the minimum energy of             J for the 

potential is decreased noticeably to approximately             J for the free energy. 

Also, it can be seen that while the equilibrium bond length is increasing, it is much less 

noticeable, increasing from 1 nm to approximately 1.0004 nm. These values can then be  

 

Figure 4-1: MC free energy results for T = 300 K. 
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used to derive an equivalent potential function for a temperature of 300 K. However, 

because this will ensure the approximation is equivalent to the free energy only at the 

equilibrium length, the energy well must be altered slightly so as to make the 

approximation at increased strain levels also equivalent to the free energy. This can be 

done by finding an energy depth value that makes the rate of change of the internal force 

(the second derivative of the potential) as close as possible. In the case of a temperature 

of 300 K, the new approximation value      is approximately 92% of the free energy 

depth, as shown in equation 4.1, where                  J and             nm. 

The derived potential can then be brought back up to the free energy level by adding the 

difference as a constant, as shown in equation 4.1. Figure 4-2 shows a comparison 

between the free energy, the derived potential which only matches the energy depth, and 

the derived potential which matches the energy depth as well as the gradient. It can be 

seen that the adjustment to match the gradient increases the accuracy of the derived 

potential function. Figure 4-3 shows a comparison between the gradients (internal forces) 

of the free energy and equation 4.1 around the equilibrium bond length up to strain levels 

of 5%, and shows that it is a good approximation for the free energy as long as the bond 

lengths do not expand or contract too much. This process can be repeated for any desired 

temperature. 

As a comparison, Figure 4-4 shows the MC results for T = 200 K. Therefore, the 

parameters for the equivalent potential are                  J and             

nm. Figure 4-5 shows a comparison between the results for T = 200 K and T = 300 K. It 

can be seen that as expected, the energy well continues to decrease with an increase in 

temperature. A comparison of the free energy and derived potential at T = 200 K can be 

 

Equation 4.1: Potential equivalent for T = 300 K 
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Figure 4-2: Comparison of free energy from MC simulation and derived potential 
functions at 300 K. 

 

Figure 4-3: Comparison of free energy from MC simulation and approximation potential 
gradients at 300 K. 
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seen in Figure 4-6. It can be seen that for the case where the temperature is set at 200 K, 

adjusting the potential to match the gradient of the free energy produces a larger increase 

in accuracy than for the previous case. Figure 4-7 shows the comparison between the 

gradients of the free energy and the equivalent potential function for T = 200 K. It is 

important that the approximation potentials are representative of the free energy as much 

as possible, because if there is a noticeable difference, the MD and FE domains will 

essentially be composed of different materials. This would cause reflections of the wave 

at the interface which is due to material properties, not numerical errors. 

 

Figure 4-4: MC free energy results for T = 200 K. 
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Figure 4-5: Comparison of free energy from MC simulations at different temperatures. 

 

Figure 4-6: Comparison of free energy from MC simulation and derived potential 
functions at 200 K. 
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Figure 4-7: Comparison of free energy from MC simulation and approximation potential 
gradients at 200 K. 

4.2 Shockwave Propagation with TCB Rule 

 For the FE domains, the Temperature-Related Cauchy-Born Rule will be used to 

incorporate the effects from the prescribed temperature. Because the system is one-

dimensional, the degrees of freedom n in equation 2.37 is one. The TCB rule for the free 

energy can then be written as equation 4.2. The PK stress can then be found by taking the 

derivative of equation 4.2 with respect to r from equation 2.39. Using the LJ potential 

function, the PK stress can be written in semi-simplified form as equation 4.3. It should 

noted that in equations 4.2 and 4.3, the potential U, and parameters   and   , are from the  

 

Equation 4.2: TCB rule free energy homogenization 
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Equation 4.3: TCB rule PK stress 
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original LJ potential function, not the derived approximations. This is because the second 

term is used to alter the potential energy relative to the temperature. 

 Using the same parameters chosen for the MC simulations,              J 

and        nm, a shockwave can be simulated using a multiscale model with FE 

element size        nm. The transition region will be in the center of the model, as 

studied in the previous chapter, and the molecular chain will have a length of 2000 total 

bond lengths, or     μm. The MD domain will be governed by the derived approximate 

potentials as in equation 4.1, while the FE domain will be governed by the TCB rule, 

equations 4.2 and 4.3. Figure 4-8 shows a comparison of a wave propagating with the  

 

Figure 4-8: Comparison of wave propagation with TCB and derived potential. 



www.manaraa.com

56 
 

 

5
6
 

TCB in a FE-only model and a MD-only model with the derived approximation potential. 

It can be seen that the two have a very good relationship, so the multiscale model can be 

used. Two wave shapes will be tested: the square wave with constant magnitude and the 

exponentially decaying wave with an initial magnitude that decreases exponentially after 

a given time. A force with an initial magnitude of 10 nN will be applied to the end of the 

molecular chain. As a reference case, the zero temperature case will be examined first. 

 First, the square wave will be examined. The force is applied for 0.5 ms, and then 

released. Figure 4-9 shows the wave at times        ,         and        ms 

without the FCT algorithm. Figure 4-9 shows the wave with the FCT algorithm, with a 

very good discontinuous shock front, no oscillations, and no pulses due to reflection. This 

agrees with the results found in the previous chapter, as only the potential is considered 

when the temperature is set to zero. Figures 4-10 and 4-11 show the decaying wave  

 

 

Figure 4-9: Square stress wave at zero temperature without FCT. 
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Figure 4-10: Square stress wave at zero temperature with FCT. 

 

Figure 4-11: Decaying stress wave at zero temperature without FCT. 
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Figure 4-12: Decaying stress wave at zero temperature with FCT. 

before and after applying the FCT algorithm, respectively. The initial magnitude was held 

for 0.15 ms, and then decreased exponentially down to zero. Because the LJ potential is 

used, the effects due to the difference in speed between the loading wave and the 

unloading wave can be seen. Again the FCT algorithm provides a very good 

discontinuous shock front without oscillations or the pulses due to reflections as 

expected.  

 Next, the case when the temperature is set to room temperature, 300 K, will be 

examined. As previously mentioned, the parameters for the MD domain’s potential 

equivalent are                  J and             nm. Figures 4-13 and 4-14 

show the square wave before and after the application of the FCT algorithm, respectively, 

while Figures 4-15 and 4-16 show the decaying wave. It can be seen that there are very 

small reflections due to the small differences between the approximation potential and 

free energy. However, they are similar enough that the reflections are negligible  



www.manaraa.com

59 
 

 

5
9
 

 

Figure 4-13: Square stress wave at 300 K without FCT. 

 

Figure 4-14: Square stress wave at 300 K with FCT. 
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Figure 4-15: Decaying stress wave at 300 K without FCT. 

 

Figure 4-16: Decaying stress wave at 300 K with FCT. 
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compared to the stress. Figure 4-17 shows a comparison for the cases T = 0 K and T = 

300 K. Because higher temperatures correspond to higher molecular kinetic energies, it is  

expected that the shock waves will travel faster with higher temperature, and Figure 4-17 

shows this does indeed occur, although not at a very significant level due to the initial 

parameters chosen. The larger the discrepancy, the more energy is reflected due to it 

being the equivalent of having different materials. These figures also show that by using 

the free energy and the TCB rule, the temperature effects can be included without the use 

of molecular kinetic energy. The waves clearly retain their shape and size from the zero 

temperature, where only the original potential function is used, to the higher 

temperatures. Figures 4-18 through 4-21 show the wave for the case when T = 200 K. 

While the temperatures are close enough that the wave speed difference is not noticeable, 

it can be seen the capability of the free energy method and FCT is viable for any 

temperature, assuming that the bonds do not break due to the temperature. 

 

Figure 4-17: Wave speed comparison for temperatures of 0 K and 300 K. 
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Figure 4-18: Square stress wave at 200 K without FCT. 

 

Figure 4-19: Square stress wave at 200 K with FCT. 
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Figure 4-20: Decaying stress wave at 200 K without FCT. 

 

Figure 4-21: Decaying stress wave at 200 K with FCT. 
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CHAPTER 5 

SUMMARY AND RECOMMENDATONS 

5.1 Summary and Conclusions 

In this thesis the simulation of shockwave propagation in a one-dimensional solid 

was studied. The simulations were investigated using multiscale models, to compare the 

effects from the molecular scale to the continuum scale. The removal of oscillations 

behind the shock fronts, which were generated as numerical errors, was also investigated 

using the finite element flux-corrected transport algorithms. Lastly, a method to study the 

temperature effects without using velocity scaling was investigated by utilizing the free 

energy and the Temperature-Related Cauchy-Born Rule.  

 The multiscale modeling was done by coupling the molecular dynamics from the 

molecular domain to the finite element analysis from the continuum domain by using the 

edge to edge Macroscopic Atomistic Ab Initio Dynamics method. It was found that as the 

element size to bond length ratio increased at the MAAD edge, there was greater 

reflections of the oscillations generated in the MD domain. As a result, when the FCT 

algorithm was applied these reflections produced small pulses in the model, which were 

nonphysical results. It was found that a transition region from MD to FE domain was 

needed to remove these pulses, by gradually increasing the element size of the continuum 

domain from very close to the MD bond length (less than double) up to the regular 

element size used for most of the FE model. The smaller the incremental increase in 

element size, the more the reflections were reduced. It was found that the pulses became 

negligible by using an increment size of one fourth of the original bond length, although 

this can differ based on the material properties. Once the transition region was 

established, the FCT was able to effectively remove the numerical errors while keeping a 

sharp, discontinuous wave front for a variety wave shapes, including shapes which 

typically began breaking down due to the errors when the FCT had not been applied.  
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While multiscale models can overcome the time and length scale limits of 

Molecular Dynamics, the temperature effects are still difficult to study. By utilizing the 

free energy and TCB rule, the temperature effects on the shockwave propagation were 

able to be approximated. This was done by first using a Monte Carlo simulation to obtain 

a plot of the free energy, which is dependent on the temperature. Using the data from the 

MC simulation, a new potential function was derived for the MD domain, while the FE 

domain was homogenized by the TCB rule, which also utilizes the free energy to capture 

the temperature effects. Using these two methods, various effects due to temperature 

were able to be captured, such as the deepening of the energy well, an increase in the 

undeformed bond length, and an increase in wave speed. As expected, it was found that if 

the molecular bonds were too stiff that the temperature effects became negligible and 

there was little difference from the zero temperature case. Similarly, if the bonds were too 

soft, the temperature effects caused the bonds to break and the model became unstable. 

Because of this, if the potential function is biased towards one extreme or the other, then 

the new potential approximation that was derived for a certain temperature will diverge 

from the free energy as the bond length differs from undeformed length. Because the 

TCB rule in the FE domain is always governed by the free energy, this divergence can 

cause the MD domain and FE domain to effectively behave as different materials, and 

create energy reflections at the multiscale coupling interface. Because these reflections 

are due to apparent differences in material properties and not numerical error, the 

transition region will do little to eliminate these reflections. Only a closer approximation 

between the new molecular potential and the free energy will effectively reduce these 

reflections. 

5.2 Future Work 

Several recommendations can be made for the further study of shockwave 

propagation in multiscale models and non-zero temperature fields. It is known that if the 
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molecular bonds are stretched too far, the bonds will break, releasing energy. This 

released energy can be incorporated as an increase in local temperature. The effects of 

this non-homogenous temperature field can be studied by including a thermo-mechanical 

coupling based on this increase in local temperature. The temperature gradient can be 

studied by using the thermal diffusion equations along with the TCB rule. The multiscale 

effects can also be improved by using a more robust multiscale coupling method. For 

example, the Bridging Domain Coupling Method imposes constraints to extend the 

coupling region from a single edge to a separate region, where both the MD and FE 

regions simultaneously govern the motion. 

Also, the simulations were done using fictitious materials with arbitrary 

properties. This was done primarily for verification of the proposed methods. The 

methods used can easily be extended for use with realistic material properties and 

practical problems. As such, further research can obtain experimental data to evaluate the 

simulation results. 
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